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Objectives

B Recommend using an objective approach, not an assumption, to
model CER error distributions

e A hypothesized distribution (e.g., normal, log-normal, triangular, etc.)
may not be appropriate to model the errors of a cost estimating
relationship (CER) for cost uncertainty analysis

m Develop easy-to-follow guidance for analysts to derive distribution
fitting results for cost uncertainty analysis

e The fitted distribution should be adjusted properly to build prediction
Intervals for cost uncertainty analysis

Our goal is to derive CER error distributions from real data

rather than from assumptions

g‘;‘ PRT- 167 10 Dec 2013 Approved for Public Release



Outline

m Objectives

B Common Questions for Fitting CER Errors

m Prediction Interval (PI) Analysis

B Adjustment Factors for Uncertainty Analysis

B Easy-to-Follow Implementation Steps

B Concerns about Analyzing Different CER Errors Together
m Analyzing Errors for USCM9 Subsystem-Level CERs

m Conclusions and Recommendations

VPRT- 167 10 Dec 2013 Approved for Public Release



Common Questions for Fitting CER Errors (1/3)

m What should we analyze for (ordinary least squares) OLS CERs?

e residuals (yi — 9,) Y; : Actual Observation i=1..n
Y. CER Predicted Value | " = sample size

e standardized residuals ((y, — V)/se(y;—Y;)) L2 .

m What should we analyze for MUPE and ZMPE CERsS?
e ratios of actual to predicted (yi/y;)
e percentage errors ((y, — ¥)/Y,)

m Findings:

e Just like residual vs. standardized residual plots, the histograms of
residuals and standardized residuals look very similar. It is adequate to
fit residuals to find the error distribution for additive CERSs.

e Percentage errors are centered on zero; hence, they cannot be fitted by
a log-normal distribution unless a location parameter is used

Analyze (1) residuals (y; — y;) for additive error models and

(2) ratios of y;/y, for MUPE and ZMPE CERs
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Common Questions for Fitting CER Errors (2/3)

m What should we analyze for log-error CERs, y./y. in unit or log space?

B Two methods are commonly used to fit a log-normal distribution

e Maximum-Likelihood Estimation (MLE) solution for u and o in log space

n I - _I ". g ............ :\ ................u.:...................u.............u.......................u.............u.......u....u.u.u.u;
~ ,Zﬂ:( n(y) n(y,)) : 4 and o are evaluated in log space;
a n . should be zero for log-linear CER.

n i , & Cw . CBuses (n-1) in the denominatorto |
) Z(In(yi/Yi)_O) _ (In(y,) = In(3,)) . estimate o; @Risk uses the sample size
o= - . - ~n. It should be {n- p) to account for DF.

________

where ObsFreq = the number of sample points equal to y;, inclusive
NumObsBelow = the number of observations below the value of y;

e MLE and Unit-space Least Square solutions are different

Fit ratios of y;/y, in log space for log space OLS (LOLS)
CERs for consistency
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Common Questions for Fitting CER Errors (3/3)

m Should we apply any adjustments to the distribution fitting tool
results for uncertainty analysis?

m Findings:

e We should apply adjustments when fitting distributions to CER errors,
as well as sample data. Otherwise, the range of the PI will be smaller
than it should be

Adjustments should be applied when using distribution

fitting tool results for uncertainty analysis
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Use prediction interval (Pl)
concept to derive adjustments
for CER uncertainty analysis
when using a distribution
fitting tool




Uncertainty Analysis
PlforOLS: Y=a + bX + ¢ (¢ ~N(0, 153))

B A (1-a)100% PI for OLS is given below When X =X, (an estimating point):

Adjusted SE for OLS

1 (X )_() 2, The PI formula
0 20 * - can be extended
' XX o driver variables

X, IS the value of the predictor variable used in calculating the estimate
Y, IS the estimated value from the CER when X = x,

SE is CER'’s standard error of estimate; “n-2" is degrees of freedom (DF)
“‘Adj. SE” is the adjusted standard error for PI

tws2, n-2) IS the upper a/2 cut-off point for a t distribution with “n-2" DF
x=" x)/n and SS, =Y (X —X)’

m Use Student’s t distribution to model CER uncertainty: enter the “Ad,.
SE” in the scale field and specify DF in the degrees of freedom field

m If the data set is unavailable, we can use a heuristic approach to
approximate the “Adj. SE” measure
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Uncertainty Analysis
Plfor WLS: Y=o + X + ¢ = f(X) + ¢ (¢ ~N(0,Vs523))

A (1-oc)100% Pl for WLS when X = x, (an estimating point): [The Pl fo”“u'a}
t e

can be extended
o include multipl
driver variables

S R RE

1 1 X. — X )2 .
1E(Xo) Yaran- 2)*§E*\/ + +( o —X) FT(X) £t /2,02 * (Ad). SE)

f(x,), .., ¥p, IS the estimated value from the CER when X = x,

W, is the weighting factor for y when x = x, (w, = (1/f(x,))? for MUPE)

w; is the weighting factor for the ith data point (w; =1/(f(x;))? for MUPE)

“‘Adj. SE” is the adjusted standard error for PI

t(a,z - 2) Is the upper o/2 cut-off point for a t distribution with “n-2" DF
S oW (6)/ 2w and S8, =3 w(x —X,,)

m Use Student’s t distribution to model CER uncertainty: enter the “Ad,.
SE” in the scale field and specify DF in the degrees of freedom field

m If the data set is unavailable, we can use a heuristic approach to
approximate the “Adj. SE” measure
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Uncertainty Analysis
Pl for MUPE Factor CER: Y = X * ¢ (¢ ~N(0,152)) (1/2)

. 1 (x,)2 oL Adjusted SE for a Adi
_ *QE * 0 L g . justed SE for
Pl =Y, 21400 T SE \/ W ST e weighted factor CER _ aMUPE/ZMPE
........... 0 R I " factor CER

= Vo £t np *SE *\/ (1+%)b2x§ = 90[1J_rt(a,2,n1) *SE \/E}E’;%(lﬂ(“’z‘”” *Adj SE)
Yo (=bx,) Is the estimated value from the CER when X = x,
W, is the weighting factor for y when x = x, (w, = 1/(bx,)* for MUPE)
w; is the weighting factor for the it data point (w; =1/(bx;)? for MUPE)
“Adj. SE” is the adjusted standard error for PI
tiws2, n-1y 1S the upper a/2 cut-off point for a t distribution with “n-1" DF

m Use Student’s t distribution to model CER uncertainty: enter the “Ad,.
SE” in the scale field and specify DF in the degrees of freedom field

m We do not need the actual data set to a build Pl for MUPE and ZMPE
factor CERs since the adjustment is a constant factor
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Uncertainty Analysis
Pl for MUPE Factor CER: Y = X * ¢ (¢ ~N(0,152)) (2/2)

B A (1-a)100% PI for MUPE Factor CER when X = X, (an estimating point):

— §/O£1J_rt(a,2 ) *SE*N/ 1+1 }:bxo[lirt(w,2 1) *S—_Z* bx (1+ (@2,0D) *(Adj SE))

................... Adjusted SE for
a MUPE/ZMPE

e Db is the estimated factor for MUPE/ZMPE CER; z = y/x factor CER
e SE=S,/z=CV(Z) where z=y/x and S, is the standard deviation of Z

(O - D o S |
: - - - w; =1/(bx;)? for MUPE/ZMPE |

e 1(b221(xJ _Zl?ml n— 1(%Z(ﬂé(nb)+ﬁ b:(ii}nzz

:bz(i_l)(i(ﬂz bJ ER 1)[22 —nzj e

I Note the PI for MUPE (and ZMPE) factor CER can be expressed by a
simple closed form formula
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Uncertainty Analysis
Pl for LOLS: Y = o*XP*c (¢ ~ LN(O, 152))

B A (1-a)100% PI for LOLS is given below when X = x, (an estimating point):

j Adjusted SE for LOLS

H ' Z?:l (In(xi) _m)z ““““ [ The PI formula}
t

can be extended
o include multiple
driver variables

® X, is the value of the predictor variable used in calculating the estimate
® VY4 IS the estimated value in log space when X = x,

e SE is CER'’s standard error of estimate in log space

e In(x) is the average of all the values of x;'s evaluated in log space

m Use Log-t distribution to model CER uncertainty: enter “Adj. SE” in the
scale field and specify DF in the degrees of freedom field

m If Log-t distribution is not available, use Student’s t distribution in log
space, but make sure to bring the results back to unit space

Tip: Use Log-T distribution to construct Pl for LOLS CERs
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Uncertainty Analysis
Pl for Univariate Analysis

m Given arandom sample {y,, ¥Y5,-.-, ¥} from a normal distribution, a
(1-a)100% PI for a future observation is given by

T ‘e
+ t(a/2,n—l) *SY * 1"‘; =y (1t t(alz,n—l) *7Y* 1+H)

(L1t 0 * (Adj. SE))

Pl =

<]

Il
<|

Ad). SE for Univariate

e y=0__v)/n is the sample mean

o S, =0 (—-¥))/(n-1) is the sample standard deviation

e “Adj. SE” is the adjusted standard error for PI

® t,2 n1)iS the upper o/2 cut-off point for a t distribution with “n-1" DF

B Use Student’s t distribution to model the uncertainty: enter the “Adj.
SE” in the scale field and specify DF in the degrees of freedom field

m The Pl for univariate analysis is the same as the PI for the MUPE/ZMPE
factor CER
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Two factors can be easily identified
using the Pl formula:

1) location factor (from SE to Adj.SE)
2) t.;2, or) (from normal to t distribution)

There is a third one: regression factor




Adjustment Factors
for Uncertainty Analysis (1/4)

m A distribution fitting tool does not know
e whether the data set is an entire population or a random sample

e how many coefficients are estimated by the CER (when modeling the
CER errors)

B Regression Adjustment Factor is given by

.............................................................................................................

B Use Regression Adjustment Factor to account for
e the difference between sample and population

e the appropriate degrees of freedom if certain parameters are estimated
by the sample

e Note: “df” stands for the degrees of freedom of the CER

@PRT- 167 10 Dec 2013 Approved for Public Release
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Adjustment Factors
for Uncertainty Analysis (2/4)

m Use Location Factor to account for the distance of the estimating
point (i.e., x,) from the center of the database

e |n a simple linear model, the location adjustment factor is given by

where X, IS the value of the predictor variable used in calculating the estimate
and Sy is the uncorrected sample standard deviation

e Pl gets larger when the estimating point moves farther away from the
center of the database

e |[f the data set is unavailable, we can use a heuristic approach to
approximate the “Adj. SE” measure:

Heuristic Assessment:

(0.25 Very Similar
. I Distance = (Xg—X)
0.75 Similar 0
D_|stance = ) Driver Stdev = Sy
Driver Stdev  |1.50 Somewhat Different

13.00 Very Different

WPRT- 167 10 Dec 2013 Approved for Public Release




Adjustment Factors
for Uncertainty Analysis (3/4)

m Use DF Factor to account for small samples

df | Note: “df’ stands for the degrees of freedom of the CER,
df —2 i which is the DF of Student’s t (or Log-t) distribution

....................................................................

e The DF adjustment factor accounts for the broader tails of Student’s t
(or Log-t) distribution for small samples. For example, we should
multiply the Adj. SE by the DF factor if we use normal instead of t
distribution for uncertainty analysis.

e The DF factor is the standard deviation of a Student’s t distribution with
a scale parameter one and “df” degrees of freedom

e Do not apply the DF adjustment factor if a Student’s t or a Log-t
distribution is chosen to model the CER errors

m Consider applying DF, Regression, and Location Factors when using
a distribution fitting tool for cost uncertainty analysis. Otherwise, the
range of the Pl will be smaller than it should be.

@PRT- 167 10 Dec 2013 Approved for Public Release
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Adjustment Factors

for Uncertainty Analysis (4/4)

Location Factor by Model Type

Location Factor = (Adj. SE) /SE

Model _ _
(for one predictor variable)
v 2 X2
Additive Linear:\/1+l+ (% =X)/S,) Factor: |1+ <"
n n D%
2
Log-Linear 141y (nln(xo) In(x))" :
N> (n(x) = In(x))
1 X, — X))
MUPE (Linear) 1+ = + (AZO )
yO Zwi yO (SSWXX)
MUPE (Factor) 1 Heuristic Assessment:
1+—
Univariate n 0.25 Very Similar
Distance ~_ |0.75 Similar
Heuristic \/1+1+ (Distance/Driver Stdev)? Driver Stdev  |1.50 Somewhat Different

n n

3.00 Very Different

B X, Is the value of the independent variable used in calculating the estimate and
Y, is the estimated value from the CER when X = X,

m Distance = (X, — X); Driver Stdev =S, =SS, /n :\/Zi”_l(xi -X)?/n (uncorrected stdev)

g! PRT- 167 10 Dec 2013
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Easy-to-Follow Implementation Steps (1/3)

m Summary Table of Adjustments:

Model Type FAdjustments

Additive (y; —V¥) * (Net Factor)

Log-Error (In(y;) — In(yy)) * (Net Factor)

MUPE/ZMPE | (y;/ ;) * (Net Factor) — Shift

Univariate (v, /'y) * (Net Factor) — Shift

B Net Factor (NF) = (DF Factor) * (Regression Factor) * (Location Factor)

e Do not apply the DF factor to compute NF if (1) deg of freedom > 50 or (2) a
Student’s t or a Log-t distribution is chosen to model the CER error distribution

m Shift=NF-1

e Shiftis applied to (1) MUPE and ZMPE CERs to ensure the fitted distribution is
centered on 1 and (2) univariate analysis to preserve the sample mean

Tip: Make appropriate adjustments before using a distribution fitting tool

?PRT- 167 10 Dec 2013 Approved for Public Release 19



Easy-to-Follow Implementation Steps (2/3)

Model Type FAdjustments

Additive (vi — V) * (Net Factor)

Log-Error (In(y;) — In(yy)) * (Net Factor)
MUPE/ZMPE | (y,/V;) * (Net Factor) — Shift

Univariate (y: /'y) * (Net Factor) — Shift

m For consistency, we should know how the CERs/PERs were derived
e Fit residuals for additive models
e Fit residuals in log space for log-error models; e.g., log-linear CERs
e Fit percentage errors in ratios of y, to y, for MUPE and ZMPE CERs

m Deduce the fitting hypothesis if the method is unknown:
° I(y,—$) =0 > OLS
e X(In(y;) —In(y)) = 0> LOLS

o (Z(y;—y)ly) I n=1> MUPE or ZMPE (or LOLS with PING Factor or
Smearing Estimate)
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Easy-to-Follow Implementation Steps (3/3)

Model Type FAdjustments

Additive (vi — V) * (Net Factor)

Log-Error (In(y;) — In(y;)) * (Net Factor)

MUPE/ZMPE | (y;/y;) * (Net Factor) — Shift

Univariate (y: 1 y) * (Net Factor) — Shift

B Suggest using an additional cell for the error distribution besides PE

e Make sure the error term is applied to the PE appropriately

m Be careful when using one cell for both the PE and error term
e Mean = PE, SD (for Student’s t) = o, (from curve-fitting tool) * PE

e Mean = PE, Mode (for Triangular) = 3*PE — Min* PE — Max* PE L For MUPE and
ZMPE CERs

e Mean = PE, o in log space (for Log-normal) =/ InL+57)

—

e Median = PE, scale parameter (for Log-t) = o (in log space) for log-error model

?PRT- 167 10 Dec 2013 Approved for Public Release 21



A MUPE CER Example: Cost = a + b*Wt (1/2)

Model Type | Adjustments

MUPE/ZMPE | (y;/V;) * (Net Factor) — Shift

A MUPE CER: Cost = 220.0895 + 3.8112 * Weight (SE = 28.13%, N = 49)

m Given: x, =300 Ibs, y,=1,363.45, SS,,,, = 1.072, X,=469.475, and Zw; =
8.2795*10"-6

m DF, Regression, and Location Factors are given by Ihoesgii:'sgcl'gcgé'(t’h”efj‘jf;?gn'ie

e DF Factor = sqrt(47/45) =1.022 5 ratio to address the similarity :
between the estimating system i
® Regression Factor = sqrt(49/47) = 1.0211 e R e
. _ 1 (X X,)? 10”6 (300 —469.4747)* _
e Location Factor = Jl+ %ZW vZ(SS,.) \/1+ (1346.45)%(8.27953) " (1346.45)(1.07202) =103893

m Net Factor =1.0211*1.022*1.038933 = 1.084125
B Shift = Net Factor — 1 =0.084125
m Fit: (y;/y;) * (Net Factor) — Shift = (y;/y;) * (1.084125) — 0.084125

@PRT- 167 10 Dec 2013 Approved for Public Release 22



A MUPE CER Example: Cost = a + b*Wt (2/2)

m Results derived by Distribution Finder for the “adjusted % errors”:

Sample LogNormal  |Normal Triangular  |Beta Uniform
Mean 1.0000 1.0035 1,0000 1,0000 1,0002 1.0000
StdDev 0.3125 0.3009 0.3093 0.3049 0.3078 0.2957
Cv 0.3125 0.2998 0.3093 0.3049 0.3078 0.2957
Min 0.2255 0.3005 0.6144 0.4878
Mode 0.8819 1,0000 0.9130 0.9734
Max 1.8066 1.7866 3.8257 1.5122
Alpha 17.1439
Beta 30.0000
Data Count 49 %< 0= 0.06% None 0.01% None
Standard Error of Estimate 0.0679 0.0504 0.0584 0.0518 0.0926
Rank 4 1 3 2 5
SEE / Fit Mean 6.76% 5.04% 5.84% 5.18% 9.26%
Chi"2 Fit test 9 Bins, Sig 0.05 Good (43%)  Good (32%),  Good (31%),  Good (18%),  Poor (0%) /1
2 ///i\\\\\
. . . . . Q
Normal distribution is ranked #1 with 2 ) N
. . . o o
an estimated standard deviation of = 4 ﬁ\\
. . 4 D\

0.3093, which is almost the same as Y \&

the number reported in the regression * LA -

PI O Utp Ut " 023 033 054 070 086 102 117 133 149 165 181 | 1.96

? ——LogNormal (4) — —Normal (1) — Triangular (3) — —Beta(2) — Uniform (5)
PRT- 167 10 Dec 2013 Approved for Public Release



Concerns about Analyzing Different CER
Errors Together (1/2)

B The CER errors from different CERs may not be identically distributed

e For example, the distribution of errors from the Structure CER may not be
the same as the distribution of errors from the Electrical Power Subsystem
(EPS) CER

m The CER errors associated with different subsystems might not be
iIndependently distributed either

e We should examine whether or not these CER errors are correlated before
pooling them together

m This approach may not be feasible when fitting a distribution with
three or more parameters

e Beta distribution: the alpha, beta, Low, and High parameters for the error
distributions may not be the same across different CERs, even if all the
normalized CER errors have the same mean and same variance

e Log-normal distribution: we cannot define a global location parameter (in
a meaningful way) for a shifted log-normal distribution when analyzing the
“normalized” errors for several different CERs all together

@PRT- 167 10 Dec 2013 Approved for Public Release 24



Concerns about Analyzing Different CER
Errors Together (2/2)

If X ~LN(u, 62, i.e., LN(u, 6%, 0),then Y =aX +b ~LN(u+In(a), 62, b)

e LN(u, o2, b) denotes a shifted log-normal distribution with a mean of p,
variance o (both in log space), and a location parameter b (in unit space)

Consider k different MUPE (or ZMPE) CERs:
y; = f.e where E(g) = 1, Stdev(g) =o,,, & & ~ LN(y;, °) fori=1, ..., k
® =-c/2and o, =y In(l+oy) s, is in log space

oy, IS in unit space |

Properties of these normalized percentage errors (e;’s):
e E(e) =0 and Stdev(e;) =1 for k different CERs (i = 1,..., k)

e e/’s do not have the same mean and variance in log space; their
location parameters are also different

e,’s should not be analyzed together using a distribution fitting tool

e The analysis results will be misleading and inaccurate if we combine
these e;/'s (from different CERs) and analyze them all together

PRT- 167 10 Dec 2013 Approved for Public Release 25



440 Normalized Percent Errors for USCM9
Subsystem-Level CERs (%error + 1)

Results derived by Distribution Finder for “adjusted % errors + 1”:

Sample LN Normal | Triangular Beta Uniform
Mean 1.0000 1.0801 1.0000 1.0000 1.0003 1.0000
StdDev 0.9746 0.8385 0.9565 0.9527 0.9674 0.9127
Cv 0.9746 0.7763 0.9565 0.9527 0.9671 0.9127 One is added 1o the normalized
Min L.22r2 L0200 | -13128 | 05808 ] | o4 1o avoid centering on zero
Mode 0.5323 1.0000 0.4655 0.6295
Max 4.7993 3.5544 15.3924 2.5808
Alpha 4.7874
Beta 29.7871
Data Count 440 %<0= 14.79% 15.31% 14.45% 18.37%
Std Error of Estimate 0.3231 0.1888 0.2016 0.1206 0.3396
Rank 4 2 3 1 5
SEE / Fit Mean 29.92% 18.88% 20.16% 12.06% 33.96%
Chin2 Fit test 22 Bins, | Sig 0.05 | Poor (0%) = Poor (0%) | Poor (0%) | Poor (0%) | Poor (0%) /\
140.0 / \‘
e 2 1o /
1. Beta distribution fits the . [ ded
. =) . N
frequency histogram better than A ZN\N
. . . L \N
the other four distributions. 0 7 W
. - . / A A
2. None of these five distributions 00 / NN
. 20.0 7 \
pass the Chi-square test. 0 |22 / N

-123 -0.62 -002 058 118 179 239 299 359 420 480 540

—LogNormal (4) — —Normal(2) — Triangular (3) — —Beta(1) — Uniform (5)
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440 Normalized Percent Errors for USCM9
Subsystem-Level CERs (%error + 3.8231)

Results derived by Distribution Finder for “adjusted % errors + 3.8231”:

Sample LN Normal | Triangular | Beta Uniform This example illustrates the shifted
Mean 3.8231 3.8235 3.8231 3.8231 3.8234 3.8231 log-normal distribution is more
StdDev 0.9746 = 0.9709 | 0.9565 | 0.9527 = 0.9674 = 0.9127 useful than LN(u,c?,0).
CcVv 0.2549 0.2539 0.2502 0.2492 0.2530 0.2387 Solver is used 1o find & location
Min 1.5959 1.8031 1.5126 2.2423 parameter when fitting a regular
Mode 3.4814 3.8231 3.2886 3.4520 log-normal distribution (LN(u,52,0)).
Max 7.6224 6.3775 18.2559 5.4039
Alpha 4.7803 3.8231is an average location
Beta 29 8555 parameter for these 8 subsystems.
Data Count 440 | %<0= 000% | None None None Itis not a meaningful number.
Std Error of Estimate 0.1011 0.1888 0.2016 0.1206 0.3396
Rank 1 3 4 2 5
SEE / Fit Mean 2.64% 4.94% 5.27T% 3.15% 8.88%

Chi~2 Fit test 22 Bins, | Sig 0.05 | Poor (3%) = Poor (0%) Poor (0%) Poor (0%) | Poor (0%)
120.0

1. LN distribution fits the frequency histogram
better than the other four distributions, but
none of them pass the Chi-square test.

2. LN distribution has a standard deviation of
0.25 in log space, which is smaller than the
smallest SPE of all the eight subsystem . |
CERs under investigation. The fitted 160 220 280 340 401 461 521 58l 642 702 762 823
results are doubtful. —— LogNormal (1) — —Normal (3) —— Triangular (4) — — Beta(2) —— Uniform (5)

=
o
o
o

Frequency
(o]
o
o

@
S
o

N
g
o

20.0 1
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Use Distribution Finder to model
the error distribution for USCM9
Subsystem-Level CERs -

No specific locations are
considered in the analysis, as it
is a generalized assessment



USCM9 Attitude Control System CER
% Errors (y;/V;)

Results derived by Distribution Finder for the ratios of y;/y;:

uncertainties.

g!';‘ PRT- 167 10 Dec 2013

Sample LogNormal Normal Triangular ~ |Beta Uniform
Mean 1.0000 1.0039 1.0000 1.0001 1.0008 1,0000
StdDev 0.3776 0.3732 0.3722 0.3698 0.3761 0.3562 | @ Raw percenterrors (i.e., y;/ %)
cv 03776 03718 03722 0.3697 03758 0.3562 ﬁfﬁdiﬁaﬁ’éeci :)égiiggi?aucttigps e
Min 0.140 0.2559 0.0684 0.3630 applied due to large sample size.
Mode 0.8268 1.0000 0.7637 0.8636
Max 2.0583 2.0006 6.4772 16170l i b. These raw % errors are not
Alpha 5.1081 normalized, as they are from the
Beta 29.9987 same subsystem.
Data Count 56 %<0= 0.36% None None None
Standard Error of Estimate 0.0521 0.0696 0.0645 0.0463 0.1171
Rank 2 4 3 1 5
SEE / Fit Mean 5.19% 6.96% 6.45% 4.63% 1L71% )
Chi"2 Fit test 10 Bins, Sig 0.05 Good (74%)| Good (17%)| Good (41%)| Good (41% Poor (4%) /&x\\\
100 % // \\\
1. Both Beta and LN distributions fit the 3 pi \
frequency histogram reasonably well. % S 4 \‘\\\
2. Uniform distribution does not pass the Chi- ro /) \\\\
square test (the other four pass the test). 40 /7 ANAN
3. Beta and LN distributions seem to be 20 7 \\\\
popular candidates to model the CER 0o L N

015 034 053 072 091 110 129 149 168 187 206 225

——LogNormal (2) — =—Normal (4) — Triangular (3) — —Beta(1) — Uniform (5)

Approved for Public Release
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USCM9 Propulsion CER % Errors (y;/V;)

Results derived by Distribution Finder for the ratios of y;/y;:

g!';‘ PRT- 167 10 Dec 2013

Sample LogNormal ~ |Normal Triangular  |Beta Uniform
Mean 1.0000 1.0038 1.0000 1.0000 1.0004 1.0000
StdDev 0.3620 0.3550 0.3570 0.3523 0.3578 03384 | a. Raw percent errors (i.e., y,/ ) are
cv 0.3620 0.3536 0.3570 0.3523 0.3576 0.3384 analyzed b_y Distribution Finde_r.
Min 0.2047 0.2185 -0.3405 0.4139 No correction factors are applied.
Mode 0.8412 1.0000 0.8556 0.9343 b These raw % errors are not
Max 2.04%2 1.9261 4.7226 1.5861 normalized, as they are from the
Alpha 10.0616 same subsystem.
Beta 21.9286
Data Count 54 %< 0= 0.25% None 0.01% None
Standard Error of Estimate 0.0624 0.0657 0.0735 0.0584 0.1212
Rank 2 3 4 1 )
SEE / Fit Mean 6.22% 6.57% 7.35% 5.84% 12.12%
Chi"2 Fit test 10 Bins, Sig 0.05 Good (84%)  Good (28%)| Good (20%)| Good (11%)|  Good (9%) N
. 17N\
1. Both Beta and LN distributions fit the 5 // W\
. =) X
frequency histogram reasonably well. o //,/ \\\\
2. All five distributions pass the Chi*2 test. o 59 /7 N
3. Beta and LN distributions seem to be 40 /,/’ \\\\\
: N
popular candidates to model the CER 20 p >
uncertainties. 00 —Z / == |
020 039 057 076 094 112 131 149 168 186 205 223
——LogNormal (2) — =Normal(3) — Triangular (4) — —Beta(1) — Uniform (5)
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USCM9 Electrical Power Subsystem
CER % Errors (y,/v.)

Results derived by Distribution Finder for the ratios of y;/y;:

1. Both Beta and LN distributions fit the

frequency histogram reasonably well.

Uniform distribution fails the Chi*2 test,
but the other four pass.
Beta and LN distributions seem to be
popular candidates to model the CER
uncertainties.

g!';‘ PRT- 167 10 Dec 2013

14.0

-
o
o

Frequency
=
o
o

Sample LogNormal ~ |Normal Triangular  |Beta Uniform
Mean 1.0000 1.0037 1.0000 1.0001 1.0013 1.0000
StdDev 0.4438 0.4458 0.4308 0.4297 0.4427 0.4097 a. Raw percenterrors (i.e., yi/)"/i) are
cv 0.4438 0.4441 0.4308 0.4296 0.4421 0.4097 analyzed by Distribution Finder.
Min 0.2315 0.1556 0.2236 0.2904 No correction factors are fapplied
Mode 07662 100000 06654  (0.70L due to the large sample size.
Max 2,567 2.1792 9.5042 1.70% b. These raw % errors are not
Alpha 2.7440 normalized, as they are from the
Beta 30.0000 same subsystem.
Data Count 62 %<0= 1.01% None None None
Standard Error of Estimate 0.0489 0.1111 0.1016 0.0578 0.1638
Rank 1 4 3 2 5
SEE / Fit Mean 4.87% 11.11% 10.16% 5.77% 16.38%
Chi"2 Fit test 10 Bins, Sig 0.05 Good (33%)|  Good (17%), Good (18%)| Good (16%)  Poor (2%) h N

4.0
20 7;
T ==
023 047 070 093 117 140 163 187 210 233 257 280
—LogNormal (1) — —Normal(4) —— Triangular (3) — —Beta(2) —— Uniform (5)
31

Approved for Public Release



Conclusions

B Sample size can be a concern when using a distribution fitting tool

B Suggest fitting (1) residuals for additive error models, (2) percent
errors in the form of ratios (i.e., y;/y;) for MUPE and ZMPE CERs, (3)
residuals in log space for log-error models, and (4) ratios of actual to
the mean (y;/y) for univariate analysis

m Consider three adjustment factors when using a distribution fitting
tool for cost uncertainty analysis: DF, regression, and location factors

e Do not apply the DF factor when the sample size is fairly large (e.g., DF > 50)
or when a Student’s t or a Log-t distribution is used to model the CER errors

e Define a shift factor (1) for MUPE/ZMPE CERs, so the CER errors are centered
on one and (2) for univariate analysis, so the sample mean stays the same

m Do not pool all the residuals (or percentage errors) from various CERs
to analyze them together using a distribution finding tool
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Recommendations and Future Study

Enrich distribution gallery

e Besides commonly used distributions, consider including the following
distributions: Student’s t, Log-t, Weibull, Shifted Log-Normal, Gamma, Extreme
Value distribution, User-Defined Cumulative Distribution Function (CDF), etc.

Examine whether we should adjust DF for additional constraints

e If constraint is specified for the unknown parameters, then one restriction is
probably equivalent to a gain of one DF

e Should the inequality constraints be adjusted? If yes, how do we adjust them?

Consider applying User-Defined CDF to model sample data with two
or multiple modes

Additional research for Beta and Log-Normal distributions: can the
“world” be described by Beta and Log-Normal?
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